如今有些论断说:“AI行业不热了!泡沫终是泡沫?” 但实际上,只有身处AI产业之中的局内人才深知,在经历了理论研究、数据驱动的阶段后,整个行业日渐成熟,进入了产业落地应用阶段。眼下亟需的是从技术到业务的融合,而不仅是技术本身的迭代。
第四次工业革命的驱动力量,这是科技行业对人工智能技术的价值评价。这次技术革命涌现出的新型AI复合型人才,正乘着AI产业化落地应用的风口,在各自的行业披荆斩棘。用AI驱动业务、推动产业升级,就是这些人的时代使命,江湖人称“AI架构师”。
从字面拆解“AI架构师”——AI对应算法技术;架构师则涉及对工程架构和业务的把握。把AI技术高效落地应用,找到在当前算法中能够最大化满足约束条件,并最优地实现目标的方法,这是AI架构师的核心使命。
但遗憾的是,AI架构师的成长是一个漫长的过程。让做算法的人去了解业务架构,让做传统架构的人去把握AI技术,这需要工程师长时间的深度实践积累和技术抽象能力。
四大象限:找准AI架构师转型方向
在所有工程师中,研究算法出身的工程师和扎根工程技术出身的架构师,是最有可能转型成为AI架构师的两类人。他们有不同的侧重点,转型后具体又可以细分为四个方向可供大家参考:
1、算法出身转型为偏AI业务应用(偏业务策略)的AI架构师。他们有较强的AI技术背景,对业务的理解更深刻、与业务的结合更紧密;
2、算法出身转型为偏AI平台工程架构的AI架构师。他们有较强的AI技术背景,工作职责相对前者偏平台或中台,对业务的支持更广泛;
3、工程出身为转型偏AI业务应用(偏策略架构)的AI架构师。他们有传统架构师背景,工作职责贴近业务且擅长从架构策略发挥 AI 作用;
4、工程出身转型为偏AI业务应用(偏工程架构)的AI架构师。他们依然有传统架构师背景,工作职责却更偏底层的工程架构设计与实现。